
Improving Load Balance with
Flexibly Assignable Tasks

Ali Pinar, Member, IEEE Computer Society, and Bruce Hendrickson, Member, IEEE

Abstract—In many applications of parallel computing, distribution of the data unambiguously implies distribution of work among

processors. But, there are exceptions where some tasks can be assigned to one of several processors without altering the total volume

of communication. In this paper, we study the problem of exploiting this flexibility in assignment of tasks to improve load balance. We

first model the problem in terms of network flow and use combinatorial techniques for its solution. Our parametric search algorithms

use maximum flow algorithms for probing on a candidate optimal solution value. We describe two algorithms to solve the assignment

problem with logWT and jP j probe calls, whereWT and jP j, respectively, denote the total workload and number of processors. We also

define augmenting paths and cuts for this problem, and show that any algorithm based on augmenting paths can be used to find an

optimal solution for the task assignment problem. We then consider a continuous version of the problem and formulate it as a linearly

constrained optimization problem, i.e.,min kAxk1; s:t: Bx ¼ d. To avoid solving an intractable1-norm optimization problem, we show

that, in this case, minimizing the 2-norm is sufficient to minimize the 1-norm, which reduces the problem to the well-studied linearly

constrained least squares problem. The continuous version of the problem has the advantage of being easily amenable to

parallelization. Our experiments with molecular dynamics and overlapped domain decomposition applications proved the effectiveness

of our methods with significant improvements in load balance. We also discuss how our techniques can be extended to heterogeneous

parallel computers.

Index Terms—Parallel computing, load balancing, flexibly assignable tasks, maximum flow, constrained least squares.

�

1 INTRODUCTION

IN many applications of parallel computing, the distribu-
tion of data among processors implies a corresponding

distribution of work. However, there are important excep-
tions to this rule that arise for one of two reasons. First,
some portions of the data may be replicated on multiple
processors, any of which could perform the associated
work. Second, tasks may involve multiple data items which
may not all reside on the same processor. Thus, all the
interacting data will need to be combined on a single
processor before the computation can be completed. In
principle, any processor could perform this task (see, e.g.,
[1]), but for the purposes of this paper, we will consider
only those processors owning a portion of the relevant
data—other options would increase the communication
requirements.

Examples of such flexibly assignable work are common in
scientific applications. In molecular dynamics simulations,
a force is computed between any pair of particles that are
close to each other. For large problems, these calculations
are usually parallelized by dividing the particles among the
processors [2]. If two close-by particles reside on different
processors, then either processor could perform the
computation.

Another example arises in finite element simulations.
These calculations consist of several computational phases,

some of which are element-based, while others are node-
based. If, for instance, the mesh is partitioned so that
processors own full elements, then nodes at the boundary
between elements will be duplicated on at least two
processors. Any of these processors could perform the
node-based operations for these shared nodes. If, instead,
the mesh is partitioned by nodes, then some elements will be
divided amongmultiple processors. Any of these processors
could be employed to perform the element computation.

A third example comes from an important class of
preconditioners known as overlapped Schwarz domain
decomposition [3], [4]. In this preconditioning scheme,
processors perform one calculation on subdomains that
overlap each other and another calculation on disjoint
subdomains. With the overlapped domains, some portions
of the data are duplicated on multiple processors. Any of
these processors could perform the calculations for these
duplicated objects in the disjoint portion of the computation.

The freedom to assign work to any of several processors
raises the question of how best to exploit this flexibility. In
this paper, we investigate using this freedom to improve
load balance. That is, we want to give most of this flexibly
assignable work to processors that would otherwise have
too little to do. More formally, we address the following task
assignment problem:

Given: A set of unit tasks and the (possibly singleton) set of

processors that can perform them.

Find: An assignment of tasks to processors that minimizes the

number of tasks assigned to the maximally loaded

processor.

Despite its practical utility and the rich literature on
formulations of load balancing problems (e.g., [3], [5], [6],

956 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

. A. Pinar is with the High Performance Computing Research Department,
Lawrence Berkeley Lab, Berkeley, CA 94720-8139. E-mail: apinar@lbl.gov.

. B. Hendrickson is with the Discrete Algorithms and Math Department,
Sandia National Laboratories, Albuquerque, NM 87185-1110.
E-mail: bah@sandia.gov.

Manuscript received 9 Sept. 2003; revised 14 Oct. 2004; accepted 31 Dec.
2004; published online 22 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0158-0903.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

[7]), to our knowledge, this particular problem has not been
defined or addressed previously. After providing some
basic definitions in Section 2, we investigate several
combinatorial approaches to address the task assignment
problem in Section 3. Our experimental results prove that
significant gains in load balance can be achieved.

Besides formulating a new and practically important
problem, this paper makes several technical contributions.
First, we describe a parametric search solution that uses a
standard maximum-flow solver as a probe function. This
solution is simple to implement and allows for the use of
any maximum flow solver as a black box.

Our second combinatorial algorithm involves a more
detailed analysis of the structure of the problem. Specifi-
cally, we devise a maximum-flow/minimum-cut theorem
for our nonstandard objective function. This result gives
significant insight into the structure of the problem, and we
use it to devise an augmenting path algorithm that mimics
the structure of Ford-Fulkerson methods for maximum
flows. The result is an asymptotically more efficient
approach, but one that cannot be built upon standard
maximum-flow solvers. It is also worth noting that our
approach solves the problem of finding a maximum flow
with the property that the largest flow on any terminal edge
is minimized.

These combinatorial algorithms are sufficient for many
problems in which a serial computation can determine the
assignment as a preprocessing step to a parallel calculation.
However, in some instances, the characteristics of the
parallel computation change over time, and the assignment
must be recomputed. Our combinatorial methods are not
particularly amenable to parallelization. For this reason, in
Section 4, we present a continuous approximation to the
problem that leads to a more easily parallelized numerical
approach. The continuous approximation is closely related
to the diffusion methodology widely employed for deter-
mining work transfers in dynamic load balancing [5]. We
show that the flexibly assignable work problem can be
formulated as a linearly-constrained optimization problem,
i.e., min kAxk1; s:t: Bx ¼ d. Here, the linear constraints
Bx ¼ d guarantee that assignment of tasks is valid, and Ax
is the vector of processor loads. Minimizing the 1-norm of
this vector corresponds to minimizing the maximum
processor load. Since it is a nonsmooth function, minimiz-
ing the 1-norm is difficult. However, we are able to show
that in this context, minimizing the 2-norm is sufficient to
minimize the 1-norm, which reduces the problem to the
well-studied numerical kernel known as a linearly con-
strained least squares problem. We then show that there are
efficient parallel approaches to solve this problem. Of
course, the discretized solution to the continuous approx-
imation may not be identical to the actual solution to the
discrete problem.

The load balancing problem for heterogeneous systems
is slightly different, since merely assigning equal amounts
of work to processors is not sufficient and processor speeds
must be taken into account. In Section 6, we discuss how
our techniques can be enhanced for such systems and show
that, by only minor modifications, all of our proposed
methods can be enhanced for load balancing for hetero-
geneous systems.

2 PRELIMINARIES

A flow network is defined by a directed graph G ¼ ðV ;EÞ,
with a source vertex s, a terminal vertex t, and a capacity for
each edge ði; jÞ, which we denote by cði; jÞ.

We will define a flow f to be a function f : E ! Zþ from
edges to integers and use fði; jÞ to denote the volume of
flow along edge ði; jÞ. A flow must satisfy the capacity
constraints on edges (i.e., fði; jÞ � cði; jÞ) and the flow
conservation constraintsX

ði;kÞ2E
fði; kÞ ¼

X
ðj;iÞ2E

fðj; iÞ for all i 2 V n fs; tg:

The value of a flow jf j is defined by the flow leaving the
source s,

jf j ¼
X
ðs;vÞ2E

fðs; vÞ:

A maximum flow (max-flow) is a flow that maximizes jfj.
A flow is complete if its value is equal to the cumulative

capacity of edges leaving the source, i.e., jf j ¼
P
ðs;vÞ2E cðs; vÞ.

A graph that can support a complete flow will be called a
complete-flow graph.

Given a graph G and flow f , the residual graph Gf has the
same set of vertices as G and all edges in G (referred to here
as forward edges), plus a matching set of backward edges that
point in the opposite direction. The capacity of a forward
edge is equal to its capacity in G minus the flow assigned to
that edge in f . The capacity of a backward edge is equal to
the flow on the corresponding forward edge.

In the max-flow problem, an augmenting path is defined
as a path from s to t along which more flow can be pushed.
The capacity of a path is defined by the minimum of the
capacities of its edges. Any path in Gf from s to t with
nonzero capacity is an augmenting path and can be used to
increase the total flow.

Finding a maximum flow is a fundamental problem in
combinatorial algorithms and has been the subject of
numerous research efforts. Fundamentals of network flow
algorithms can be found in [8], [9]. In a more recent work,
Goldberg and Rao give a history of maximum-flow bounds
and relevant references [10].

The assignment of tasks to processors can be modeled as
a flow on a network G ¼ ðT; P ;EÞ, where each task is
represented by a vertex in T and each processor is
represented by a vertex in P . All processor-vertices are
connected to the terminal t by terminal edges and the source
s is connected to all the task-vertices by source edges. Task-
vertices have assignment edges connecting them to all the
processors to which the associated task can be assigned. The
graph can be simplified by combining all vertices that have
identical sets of processor neighbors. We call such sets task
groups. An example can be found in Fig. 1.

The capacity of an edge from the source to a task-vertex is
defined by the size of the corresponding task group. We will
set the capacities for assignment edges and terminal edges to
be infinite.Wewill call this graph an assignmentgraph.Notice
that assignment graphs are complete-flow graphs.

Fig. 1 illustrates an assignment graph. There are seven
task groups and four processors. v1 corresponds to a task

PINAR AND HENDRICKSON: IMPROVING LOAD BALANCE WITH FLEXIBLY ASSIGNABLE TASKS 957

group of 10 tasks and can be assigned to processors p0, p1,
and/or p2. Notice that some of the task groups can be
assigned to only one processor. This situation often arises in
practice and these tasks correspond to work that can be
assigned only to a single processor.

We can consider the assignment of tasks as a flow from
the task-vertices to processor-vertices. Our objective is to
find a flow that assigns all the tasks to processors while
minimizing the maximum load of any processor. We need
the flow to be complete (full capacity of source edges is
used) to guarantee assignment of all the tasks. We can
define the flow problem as follows:

Given an assignment graph G ¼ ðT; P ;EÞ, find a complete
flow f in G that minimizes

max
p2P

fðp; tÞ: ð1Þ

Although we define our flow problem for very specific
flow graphs, the algorithms and analysis in the following
sections are valid for any complete-flow graph. For a general
graph, wewould redefine P in (1) to be the set of vertices that
are connected to the terminal vertex (i.e.,P ¼ fv : ðv; tÞ 2 Eg).
Thus, the problem we are solving is equivalent to that of
finding a maximum flow that minimizes the largest flow
along any terminal edge.

In Fig. 2, a solution to an assignment problem is
illustrated. Numbers on the edges correspond to flow
assignments for these edges. This assignment gives an
optimal solution, where p1 and p2 are the maximally loaded
processors with 89 tasks. Out of 20 tasks of task group v3, 11
will be performed on p1 and 9 will be performed on p2.

3 COMBINATORIAL ANALYSIS

As outlined in Section 2, assignment of tasks to processors
can be formulated as a flow in a network. In this section, we
will investigate the relation between classical flow problems
and the task assignment problem. First, we will discuss
parametric search solutions that use standard max-flow
techniques as a probe function and describe a polynomial
time algorithm for the task assignment problem. Then, we
will show how Ford-Fulkerson methods can be used to
solve our problem. Specifically, we will revise the definition
of augmenting paths and cuts and show that any

maximum-flow algorithm based on the Ford-Fulkerson
method can be used for the task assignment problem.

3.1 Parametric Search

A parametric search algorithm has two components: a probe
function that determines whether there is a solution with a
cost less than a specified value, and amethod to search on the
space of candidate optimal solution values. Below, we first
show how standard maximum-flow algorithms can be used
as a probe function for our problem. Our cost function is the
maximum work assigned to any single processor. Then, we
discuss two techniques to search the space of candidate
values. The following lemma formalizes our claim for
maximum-flow algorithms being used as a probe function.

Lemma 1. There is a solution to the task assignment problem
with cost � B if and only if there exists a complete flow on the
modified graph where all terminal edges have capacity B.

Proof. Construct the assignment graph as described in
Section 2 and change the capacities of all terminal edges
to B. We claim that there is a solution to the task
assignment problem with cost � B if and only if the
maximum flow uses the capacity of all the source edges.
Proof of this claim follows.

Sufficiency. Bounds on capacities of terminal edges
guarantee that no processor is assignedmore thanB units
ofworkand, if a flowusesall the sourceedgecapacity, then
all work is assigned to processors. Moreover, the flow
solution provides the corresponding task assignments.

Necessity. Assume there is a solution to the task
assignment problem where no processor is assigned
more than B units of work. We can use the assignments
of tasks in this solution to find a corresponding flow
solution. tu

To solve the task assignment problem, we must find the
minimal value of B for which a max-flow solution uses all
the source edge capacities. We present two algorithms for
finding this value in the following two subsections.

3.1.1 Bisection Search

Bisection search is a standard technique used in parametric
search algorithms. It starts with a lower and an upper bound
on the optimal solution value anddiscards half of the interval
by probing on themidpoint of the current bounds. This gives
an �-approximation algorithm for real-valued solutions, but

958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

Fig. 1. Example of an assignment graph. Fig. 2. Example of a solution on an assignment graph.

finds an exact solution when the optimal solution value is an
integer, as in the case of our problem.

For the task assignment problem, the total number of
tasks is an upper bound on the cost of an assignment, and
the number of tasks divided by jP j is a lower bound. Thus,
a bisection search gives the following result.

Theorem 1. If WT is the total number of tasks, bisection search
solves the task assignment problem optimally with OðlogWT Þ
probe calls.

3.1.2 Incremental Search

An incremental search starts with a lower bound for the
optimal solution value and increases it until the optimal
value is found. The increments should be small enough to
avoid missing the optimal value, but large enough for
efficiency. The following lemma and theorem show how the
lower bound can be increased after a failed probe call—that
is, a max-flow problem with terminal edge capacities B in
which not all the source edge capacity is utilized.

Lemma 2. Let ðu; tÞ be a terminal edge that is not saturated in a
maximum-flow solution f for a probe value B (i.e., fðu; tÞ <
cðu; tÞ ¼ B). Then, for any probe value B0 > B, there is a
maximum-flow solution f 0 in which f 0ðu; tÞ � fðu; tÞ.

Proof. When the Ford-Fulkerson method is used to achieve
an optimal solution f 0 for bound B0 > B by using f as an
initial solution, we can get an optimal solution with
f 0ðu; tÞ � fðu; tÞ. First, note that u is not reachable from s in
Gf , and increasing terminal edge capacities does notmake
u reachable from s. Furthermore, u will not be reachable
while the flow is being modified via augmenting paths.
Consider the first augmentingpath thatwill addavertex to
the set of vertices from which u is reachable. Observe that
such apath should reach avertex that can reach tou,which
contradicts u’s nonreachability from s. tu

Theorem 2. For a failed probe with terminal edge capacity B, let
Wr > 0 be the total unused source edge capacity and let K be
the number of saturated terminal edges. Then, there is no
feasible solution to the task assignment problem with cost less
than BþWr=K.

Proof. By the result of Lemma 2, additional flow cannot go
to any of the unsaturated terminal edges. In the best case,
additional flow will be equally distributed among the set
of saturated terminal edges. tu

As a result of Theorem 2, a failed probe value B can be
increased to Bþ Wr

K , as exploited in Algorithm IncSearch.

Algorithm IncSearch

B WT=jP j;
while not ProbeðBÞ

Let K be the number of saturated terminal

edges
and Wr be the total unused source edge capacity.

B Bþ dWr

K e;
return B;

The following lemma proves that Algorithm IncSearch
terminates and gives a bound on the number of probes it
makes.

Lemma 3. AlgorithmIncSearch terminatesafteratmost jP jprobes.

Proof. When a probe value is increased, if all previously

saturated edges remain saturated, then the probe call

will succeed. Thus, when a probe fails, at least one new

terminal edge is not saturated. That is, each failed probe

decreases the number of saturated terminal edges by at

least one. tu
Theorem 3. Algorithm IncSearch finds an optimal solution and

makes OðjP jÞ probes.
Proof. We startwith a lower bound.According to Theorem 3,

increases on B are minimal. Thus, we do not miss the

optimal value. Lemma 3 ensures that the algorithm

terminates after OðjP jÞ probes with an optimal solution.tu

Notice that successive probes solve max-flow problems
on the same graph in an incremental manner, where only
the capacities of the terminal edges increase. Thus, the
previous flow solution gives a feasible solution (though not
optimal) for the next flow solution, which might be
exploited for efficiency. Using the Ford-Fulkerson method
in its simplest way will give a complexity of OðWT � jEjÞ for
all the probes and, thus, for the algorithm.

3.2 Ford-Fulkerson Method

TheFord-Fulkersonmethodhas been the basis of a number of
algorithms to solve the max-flow problem. It is built on three
basic concepts: residualgraphs, augmentingpaths, and cuts [8].
In this section, we will discuss how it can be adopted to the
task assignment problem. First, wewill revise the definitions
of augmenting paths and cuts for the task assignment
problem, then state and prove a version of the maximum-
flow/minimum-cut theorem for the task assignment pro-
blem. The result will enable every algorithm based on the
Ford-Fulkerson method to be used to solve our problem.

The generic Ford-Fulkerson method starts with a zero

flow and continues to add to the flow along augmenting

paths until no augmenting paths are left. In the task

assignment problem, we will use augmenting paths to shift

flow (tasks) from a maximally loaded terminal edge

(processor) to a less loaded terminal edge. Formally, an

augmenting path ðpt; u; vÞ is a path pt in Gf that starts with

the vertex u of a maximally loaded terminal edge ðu; tÞ, ends
at the vertex v of a less-loaded terminal edge ðv; tÞ, and does

not go through t. We define the capacity cðpt; u; vÞ of an

augmenting path to be the minimum of the capacities of its

edges and half of the difference between the flow on the

first and last terminal edges, rounded down to an integer,

cðpt; u; vÞ ¼min

�
fðu; tÞ � fðv; tÞ

2

� �
;

minfcfði; jÞ : ði; jÞ on ptg
�
:

This implies that the capacity of a path between two

processors whose loads differ by just one is zero since such

an augmentation will not yield amore balanced distribution.
We can update flow assignment in the graph for edges

on the path and the two terminal edges connecting

processor-vertices to the terminal to obtain a more balanced

distribution, as stated by the following lemma.

PINAR AND HENDRICKSON: IMPROVING LOAD BALANCE WITH FLEXIBLY ASSIGNABLE TASKS 959

Lemma 4. Let f be the current flow, pt be an augmenting path,
and c > 0 be the capacity of this path. Define fþði; jÞ for all
edges as

fþði; jÞ ¼

fðu; tÞ � c if i ¼ u; j ¼ t
fðv; tÞ þ c if i ¼ v; j ¼ t
fði; jÞ þ c if ði; jÞ is on pt
fði; jÞ � c if ðj; iÞ is on pt
fði; jÞ otherwise:

8>>>><
>>>>:

Then, fþ does not change the total flow (i.e., jfþj ¼ jf j), but
decreases either the maximum load or the number of maximally
loaded terminal edges.

Proof. For the total flow to change, we must decrease flow
from s. This is possible only if there is an edge ðv; sÞ in pt,
but this edgemust be followed by another edge ðs; uÞ and,
thus, total flow from s does not change. With the same
argument, flow conservation constraints are satisfied for
all vertices. Since pt does not go through t, augmentation
will affect only two terminal edges: ðu; tÞ and ðv; tÞ. By
definition of an augmenting path, ðu; tÞ is a maximally
loaded terminal edge, and we decrease its load. By
definition of the capacity of an augmenting path, the load
of ðv; tÞ cannot be as high as ðu; tÞ, after we increase it. tu
In traditional flow problems, a cut ðS; T Þ in G is defined

as a partition of vertices into S and T in which s 2 S and
t 2 T . The cost of a cut is defined as the sum of capacities of
edges from S to T . The cost of a minimum cut and value of
a maximum flow are equal. A minimum cut corresponds to
a bottleneck in the flow from source to terminal. For the task
assignment problem, we will define a cut as a bipartitioning
ðP1; P2Þ of the processor-vertices. The cost of a cut is defined
to be the maximum load in P1 when 1) processors in P1 are
equally loaded and 2) all the tasks that can be assigned to a
processor in P2 are assigned to processors in P2.

By “equally loaded,” we mean that the loads of any two
processors differ by at most one. Cuts will help to identify a
bottleneck in the problem, just as in maximum flow
problems. A bottleneck in our problem is a group of
processors that have to perform a large set of tasks. Unlike
the maximum flow problem, cuts provide lower bounds on
the cost.

With the above definitions, we have the following
maximum-flow/minimum-cut theorem for the task assign-
ment problem.

Theorem 4. The following statements are equivalent:

1. Flow f minimizes the load of the maximally loaded
processor.

2. There is no augmenting path that decreases the
maximum load in Gf .

3. The maximum load is equal to the cost of a cut
ðP1; P2Þ.

Proof.

. ð1Þ¼)ð2Þ. Assume the contrary, that there exists
an augmenting path to decrease the maximum
load. Then, we can use this path to decrease the
maximum load, thus f is not an optimal flow.

. ð2Þ¼)ð3Þ. Let P1 be the set of processors with
maximum load plus processors reachable from a

maximally loaded processor in Gf . The set P2

contains the remaining processors. By construc-
tion, there are no augmenting paths from P1 to P2.
This guarantees that all tasks that could be
assigned to either P1 or P2 processors are assigned
to P2 processors. Also, since there are no
augmenting paths in Gf , the loads of all proces-
sors in P1 are either equal to or one less than the
maximum load. That is, the processors in P1 are
equally loaded.

. ð3Þ¼)ð1Þ. Since all tasks which could be assigned
to either P1 or P2 are assigned to processors in P2,
the work currently assigned to processors in P1

must be performed by processors in P1. The best
we can do is to assign all work equally, which is
guaranteed by the first condition in the definition
of a cut, so f is an optimal solution. tu

Corollary 1. Every algorithm based on the Ford-Fulkerson

method can be used to solve the task assignment problem.

It is worth noting that, although any algorithm based on
the Ford-Fulkerson method might be used to solve this
problem optimally, the complexity results might vary from
those of the conventional max-flow problem.

Below, we present an algorithm, AugPath, which finds
an optimal solution using augmenting paths.

Algorithm AugPath

find a complete flow f in G;

while there is an augmenting path pt

augment flow along pt;

Theorem 5. Algorithm AugPath finds an optimal solution in

OðjEj � log jP j �WT Þ-time.

Proof. Correctness of the algorithm is implied byCorollary 1.
Finding an augmenting path takesOðEÞ-time in the worst
case. By Lemma 4, each augmenting path either decreases
the maximal load or the number of maximally loaded

processors. This gives a loose jP j �WT bound on the
number of augmenting paths required. A better bound is
possible, however. When the maximum load is in the
range ½WT=2;WT �, only one processor might have the
maximum value and, thus, each augmenting path will
decrease the maximum load by one. Generally, when the
maximum is in the range ½WT=ðkþ 1Þ;WT=k�, there can be
at most k processors with the maximum load and
k augmenting paths may be needed to decrease the
maximum load. So, the total number of augmenting paths
can be computed as

X
1�k�jP j�1

WT

k
� WT

kþ 1

� �
k ¼WT

X
1�k�jP j�1

kþ 1� k

kðkþ 1Þ

� �
k

¼WT

X
1�k�jP j�1

1

kþ 1

¼ OðWT � log jP jÞ:
ut

960 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

4 NUMERICAL FORMULATION

The flow formulations described above provide efficient,

sequential algorithms for optimizing task assignments.

Unfortunately, maximum flow problem is P-complete [11]

and, thus, theoretically cannot have fast parallel algorithms.

From a practical perspective, we are not aware of any

efficient parallel implementations, particularly for large

numbers of processors. In this section, we describe a

continuous version of the problem and show that it reduces

to a well-studied numerical computation. Although this

approach does not provide an integral solution, its

parallelizability may make it preferable for many applica-

tions. In spirit, our approach is similar to the widely used

diffusion methods to determine how much work to transfer

between processors in dynamic load balancing [5], [12], [13].
In our numerical formulation, each task group generates

an equation. Say the task group has m tasks in it. If the task

group can be assigned to any of k processors, then there will

be k unknowns associated with the task group. Each of these

unknowns x1; . . . ; xk encodes the assignment of the corre-

sponding task group to one of the processors. In a discrete

formulation, we would want the xi values to be integral, but,

in our continuous formulation, we impose the following,

weaker, set of equality and inequality constraints.

Xk
i¼1

xi ¼ m; and xi � 0 for all 1 � i � k:

The xi values can be used to encode the work assigned to

each of the jP j processors. The task group with k potential

processors will generate k columns of length jP j. The

ith column is all 0s except for a single 1 in the row number

that corresponds to the processor associated with xi. These

columns can be treated as a matrix and multiplying the

x vector by thismatrix gives a jP j length vector containing the
work assigned to each of the processors.

We can continue this construction, adding variables,

constraints, and work contributions from all jT j tasks.

Letting jQj denote the sum over all tasks of the number of

processors that a task could be assigned to, we obtain the

following problem.

min
x
kAxk1 subject to Bx ¼ d and x � 0; ð2Þ

where A is jP j � jQj, B is jT j � jQj, and both have only a

single 1 in each column. In the flow terminology from

Section 2, the x vector is the assignment of a (possibly

fractional) flow to the edges from source-adjacent nodes to

terminal-adjacent nodes (see Fig. 1). Ax is the amount of

flow into each terminal-adjacent node, Bx is the flow out of

each source-adjacent node, and d is the vector of sizes of

task groups. So, Bx ¼ d merely encodes the flow preserva-

tion property for each source-adjacent node in a complete

flow. The 1-norm reflects our desire to minimize the work

of the maximally loaded processor. It is worth remarking

that tasks that can be performed only by a single processor

can be removed from the variable set, reducing the size of

the problem. For the example from Fig. 1, we get the

following matrices in our numerical formulation.

A ¼

1 1

1 1 1 1

1 1 1 1

1 1

0
BBB@

1
CCCA;

B ¼

1

1 1 1

1

1 1

1

1 1 1

1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; d ¼

70

10

78

20

80

12

74

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Unfortunately, the1-norm is not smooth and, so, can be
difficult to minimize. It is possible to transform the1-norm
minimization in (2) to a linear programming problem as

min c subject to Ax � c~11; Bx ¼ d and x � 0;

where c is a scalar and~11 is a vector of all 1s. However, linear
programming problems are hard to solve in parallel as well,
especially at a granularity where each processor has only a
few rows. Instead, we will replace our 1-norm with the
smoother alternative of a 2-norm as follows:

min
x
kAxk2 subject to Bx ¼ d and x � 0: ð3Þ

This formulation is an instance of what is known as a
linearly constrained least squares problem. A similar transfor-
mation from a 1-norm to a 2-norm minimization is used in
diffusion approaches to load balancing [5]. However, unlike
the diffusion methodology, in our case, we lose nothing by
transforming to a smoother approximation since, for our
problem, a solution to the 2-norm problem also solves the
1-norm problem. This is shown by the following theorem.

Theorem 6. Any x that solves (3) is also a solution for (2).

Proof. Begin by noting that (2) is identical to the flow
problem from Section 3 except that variables are
continuous instead of discrete. The analysis from
Section 3 generalizes to continuous variables in a
straightforward manner, so the structure of a solution
to (2) is the same as the structure of a solution to the flow
formulation. Specifically, a subset of processors (P1) will
have the same maximum load (lmax) and all tasks that
can be assigned to processors with smaller loads (P2)
have been so assigned.

Now, letxbea solution to (3).Thisproblemhas the same
constraints as (2), so it shares the same space of feasible
solutions. As with the solution to (2), the processors in P1

will need to be assigned at least a total of jP1jlmax load. It is
easy to showthat thecontributionof theseprocessors to the
2-norm is minimized when all their loads are equal. Any
transfer of work from processors in P2 to processors in P1

will only increase the 2-norm. So, a solution to (3)must also
be a solution to (2). tu

Least squares problems are fundamental to linear
algebra (see, e.g., [14]). Constrained least squares problems
have been studied by several researchers. Of interest to us
are iterative methods that are amenable to parallelization.

PINAR AND HENDRICKSON: IMPROVING LOAD BALANCE WITH FLEXIBLY ASSIGNABLE TASKS 961

Note that, since we are using the continuous formulation as
an approximation to a discrete problem, a low accuracy
numerical solution is sufficient.

One way to deal with linear equality constraints is the
method of weighting [14]. This method moves the equality
constraints into the objective function, but severely pena-
lizes slack in these rows by weighting these equations. So,
(3) is transformed to the form

min
x

�B
A

� �
x� �d

0

� �����
����

����
����
2

subject to x � 0;

where � is a large number used to penalize slack in the
equality constraints. This transforms our problem to an
instance of a nonnegative least squares problem,

min
x
kCx� bk2 subject to x � 0:

The nonnegative least squares problem is equivalent to the
following optimization problem:

min
x

1

2
xTEx� cTx subject to x � 0;

where E ¼ CTC and c ¼ CTb. Cryer proposed the following
SOR iteration for solving nonnegative least squares pro-
blems [15],

xkþ1
i ¼ max 0; xk

i �
!

eii
ci �

X
j<i

eijx
kþ1
j �

X
j�i

eijx
k
j

 !()
;

where ! is the overrelaxation parameter. This is a standard
stencil operation and requires only local communication
with neighbor processors. Hence, it is amenable to efficient
parallelization.

The least squares technique will give a nonintegral
solution, which needs to be discretized for task assignment.
The continuous solution can be easily mapped to a feasible
solution by adjusting the assignments for each task group.
Consider a group of tasks that can be assigned to either p0
or p1. We can round the total assignment to p0 up to an
integer and assign that many tasks to p0 and assign the
remainder to p1. Notice that this adjustment only has local
effects and is easy to generalize for more processors. We do
not have any bounds on the impact of such rounding
operations on solution quality.

5 EXPERIMENTAL RESULTS

We have applied our techniques to problems from two
application domains—molecular dynamics and overlapped
domain decomposition. In each case, as described in
Section 4, we solved the least squares formulation of the
problem in serial and used Gauss-Seidel iterations [16] to
generate a new distribution of work among processors. We
define load imbalance as ðmax� avgÞ � 100=avg, where max
and avg denote the maximum and average processor load,
respectively.

For the molecular dynamics application, we used data
provided by Plimpton which came from his spatial
decomposition code [2]. In a molecular dynamics simula-
tion, the work is dominated by the number of forces that
need to be computed between pairs of nearby atoms. In this

code, a bounding box encloses all the atoms, the box is
divided into P regions of equal volume, and each of
P processors is responsible for atoms residing within one of
the boxes. Flexibility arises when two atoms belonging to
different processors are close enough to interact. Larger
interaction cutoffs and smaller regions each increase the
fraction of flexibly assignable work. If the atoms are
uniformly distributed through the bounding box (e.g., for
simulations with periodic boundaries), then the load will
generally be well balanced. But, for problems in which the
atom distributions are inhomogeneous, significant load
imbalance arises.

We present results for two types of problems in Table 1.
In this table, N represents the number of particles and F is
the total number of pairwise force computations. A simple
way to partition a set of flexibly assignable force computa-
tions is to assign half to each of the two processors they
span. The load imbalance induced by this strategy is
detailed in column “Initial” in the table. Column “Im-
proved” contains the load imbalance resulting from using
our least squares algorithm to assign work. Clearly, our
approach can result in a significant reduction in load
imbalance. It is worth noting that these are problems of
modest size and, so, do not require very large numbers of
processors.

Of the problems in Table 1, the first comes from a
biological simulation of a membrane in which the atomic
densities are higher within the membrane than within the
surrounding fluid. For large numbers of processors, we are
able to reduce the load imbalance from an initial 58 percent
to just over 2 percent. The next two problems are instances
of a simulation of a rotating drum being used to mix solid
particles, as described in [17]. The particles fill only a
fraction of the volume of the drum, leading to significant
load imbalance. Specifically, some of the processors are
responsible for regions of space that have few or no
particles. For this problem, the particles are treated as rigid
bodies and, so, the cutoff distances are very short. As a
consequence, there are few flexibly assignable interactions,
which limits our ability to improve load balance. Despite
these inherent difficulties, we are still able to significantly
improve the overall load balance.

The second data set comes from an important class of
preconditioners known as overlapped Schwarz domain
decomposition [3], [4]. In this preconditioning scheme,
processors perform one phase of the calculation on

962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

TABLE 1
Results on Molecular Dynamics Problems

subdomains that overlap each other, and another phase on
disjoint subdomains. To achieve high performance, it is
important to balance the load of each phase. To accomplish
this, we first choose a balanced set of overlapped sub-
domains [3]. For the disjoint phase, we can then exploit
flexibility in task assignment. Specifically, overlapped
portions of the initial decomposition correspond to dupli-
cated data and any processor owning that data can perform
the associated task in the disjoint phase. Table 2 displays
our experimental results on a set of sparse test matrices
arising from applications where overlapped subdomain
preconditioners are used [3]. In this table, N denotes the
number of rows and columns of the matrix, NNZ is the
number of nonzeros in the matrix, and P is the number of
processors. These are all modest sized problems and, so, do
not require a very large number of processors. The column
labeled “Initial” describes the load imbalance associated
with assigning the disjoint subdomains to processors. The
column labeled “Improved” details the load imbalance
resulting from our least squares solution. The results
indicate that significant improvements in load balance are
achieved by our techniques.

It is worth noting that a few Gauss-Seidel iterations are
sufficient for the algorithm to converge and each iteration
consists of a simple traversal of tasks. Thus, our algorithms
are efficient and solution times are negligible.

6 HETEROGENEOUS SYSTEMS

Discussions prior to this section were limited to homo-
geneous systems, where all processors have identical
execution speeds. This assumption does not hold, however,
for many current parallel systems; processors are often
heterogeneous, i.e., they have different processing powers.
In particular, clusters of workstations, which are very likely
to have heterogeneity, are gaining popularity and signifi-

cant research efforts are devoted to their development.
Heterogeneity of the processors might lead to load
imbalance even when all processors are assigned equal
amounts of work. Varying processor speeds should be
taken into account while distributing the work to avoid
processor idle times. The objective must be to minimize the
maximum completion time among all processors, as

opposed to minimizing the maximum load.
In the following sections, we will discuss how our

techniques can be extended to exploit flexibly assignable
tasks to improve balance for heterogeneous processors. We
define the execution speed of a processor to be the number
of unit operations it can perform in a unit time, and use ei to
denote the execution speed of the ith processor.

6.1 Parametric Search Algorithms

To employ a parametric search algorithm, we first need a

probe function. For heterogeneous problems, we can still
use a max-flow solver for probing after minor modifica-
tions. Here, probe values will be the completion time of
processors, i.e., ProbeðBÞ decides if there is an assignment
of tasks for which all processors can complete in B units of
time. By defining the capacity of a terminal edge ðu; tÞ as
B � eu, where eu is the processing speed of the respective

processor, we can guarantee that all processors will
complete in B units since the work assigned to a processor
is proportional to its execution speed. We also need all tasks
to be assigned to processors, which is guaranteed by a
complete flow in the graph. Thus, a complete flow in the
graph gives a feasible solution to the task assignment
problem. Similarly, a feasible assignment of tasks defines a

flow on the graph and, thus, a max-flow solver can be used
to determine the existence of a solution within a specified
completion time.

6.1.1 Bisection Search

The bisection algorithm, as described in Section 3.1, requires
a lower and an upper bound, in addition to a probe
function. A lower bound LB to start can be chosen as the

ideal completion time, where the load is distributed
perfectly and, thus, all processors finish at the same time.
That is, we can choose a lower bound LB as

LB ¼ WTPjP j
i¼1 ei

:

PINAR AND HENDRICKSON: IMPROVING LOAD BALANCE WITH FLEXIBLY ASSIGNABLE TASKS 963

TABLE 2
Results for the Overlapped Subdomain Preconditioners

An upper bound UB can be found by assigning all tasks
to the fastest processor, i.e.,

UB ¼ WT

max
jP j
i¼1 ei

:

An optimal solution for the task assignment problem can
be found by using binary search on the interval

WTPjP j
i¼1 ei

;
WT

max
jP j
i¼1 ei

" #
:

6.1.2 Incremental Search

Incremental search requires, in addition to a probe function, a
lower bound and a strategy to increase this bound after each
probe.We already described a lower bound to be used for the
bisection search. The strategy we used in Section 3.1 to
increase the lowerboundwasbasedon trying todistribute the
unassigned work evenly among active processors. We can
use the same idea for heterogeneous systems, but this timewe
should consider the total executionpower—asopposed to the
number—of active processors. LetAf be the set of processors
whose terminal edges are saturated in flow f , i.e., Af ¼
fu : fðu; tÞ ¼ cðu; tÞg, and let Wr be the total volume of
unassigned work or in graph theoretical terms, the total
unused source edge capacity in f . In Lemma 2, we showed
that increasing the capacity of an unsaturated terminal edge
will not increase the total from source to the terminal, thus
unassigned tasks after a probe need to be distributed among
processors whose terminal edges are saturated. This means,
after a failed probe value B, we can increase the bound by

WrP
u2Af

eu
;

which corresponds to distributing the remaining unas-
signed work evenly (with respect to computational speeds)
among the active processors. Notice that an optimal
solution can be found after at most jP j probes since each
probe either succeeds or turns an active processor to
inactive, as in Section 3.1.

Theorem 7. An incremental search algorithm that starts probing
with

B ¼ WTPjP j
i¼1 ei

;

and increments the bound by

WrP
u2Af

eu
;

finds an optimal solution and makes OðjP jÞ probes.

The proof is very similar to the proof sequence for
Theorem 3, hence will not be repeated here.

6.2 Ford-Fulkerson Method

The Ford-Fulkerson method of Section 3.2 can be enhanced
to solve the load balancing problem for heterogeneous
systems through minor modifications of the basic defini-
tions. A residual graph Gf for a flow f is defined the same

way as in Section 2. An augmenting path is still a path in the

residual graph from the vertex of an overloaded terminal

edge to the vertex of an underloaded terminal edge and,

thus, helps us to shift work from an overloaded processor to

an underloaded processor for better load balance. The

capacity of a path is a function of the edge capacities on the

path and the load difference between the two processors.

Edge capacities constrain how much work can be shifted

from the first processor to the last processor. After shifting

load from one processor to another, we want the execution

times of two processors to be equal for better balance. With

simple algebra, we can show that we need to shift

dðu; vÞ ¼ evfðu; tÞ � eufðv; tÞ
eu þ ev

units of work from processor u to processor v to equalize the

loads of these processors. The capacity of an augmenting

path cðpt; u; vÞ can then be defined by the minimum of

dðu; vÞ and the minimum edge capacity along the augment-

ing path minfcfði; jÞ : ði; jÞ on ptg. However, integrality

constraints should be taken into account, thus formally

the capacity of a path pt is defined as

cðpt; u; vÞ ¼
minðbdðu; vÞc;minfcfði; jÞ : ði; jÞ on ptgÞ if eu > ev

minðddðu; vÞe;minfcfði; jÞ : ði; jÞ on ptgÞ otherwise:

�

In this definition, we use two conditions to assign the

fragmented unit of work to the faster of the two processors.
A cut is still defined as a bipartitioning of processors

ðP1; P2Þ. The cost of a cut is the maximum load among

P1 processors when all tasks that can be assigned to a

P2 processor are assigned to a P2 processor and remaining

tasks are distributed so that the completion times of

P1 processors are equal.
With the modified definitions, Theorem 4 still holds, so

we can use any algorithm based on augmenting paths to

solve the flexibly assignable task problem for optimal load

balancing on heterogeneous systems.

6.3 Numerical Formulation

In Section 4, we used the Ax vector to define the loads of

processors. To determine the completion time for each

processor, we define a diagonal matrix E with the

ith diagonal entry being the reciprocal 1=ei of the execution

speed of the ith processor. Then, EAx defines the

completion times of processors and minimizing kEAxk1
will minimize the maximum completion time among all

processors. Thus, we can state the load balancing problem

for heterogeneous systems as follows:

min
x
kEAxk1 subject to Bx ¼ d and x � 0:

In Section 4, we showed that any solution that minimizes

kAxk2 also minimizes kAxk1. Observe that our proof is still

valid when Ax is replaced by EAx, thus our numerical

formulation reduces the problem of assigning flexibly

assignable tasks for optimal load balance on heterogeneous

systems to the linearly constrained least squares problem.

964 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

7 CONCLUDING REMARKS

We have posed and addressed the problem of distributing
flexibly assignable work to processors to minimize load
imbalance. This paper considers the problem in a general
form, whereas exploiting problem-specific information
might yield more efficient solutions. For instance, in the
molecular dynamics application and in many other cases,
each task canbe assigned to oneof atmost twoprocessors.We
can exploit this fact to formulate the problem as a bounded
least squares problem, min jjAxþ bjj s:t: 0 � x � u, where u

is a vector of upper bounds on decision variables. This
formulation grants simpler and more efficient solution
techniques than the more general linearly constrained least
squares formulation.

We also suggest several research directions. First, the
structure of this problem may allow specialization of flow
techniques. It will be interesting to investigate if and how
the advanced techniques for max-flow problems can be
suited to our problem for more efficient combinatorial
algorithms. Second, it would be helpful to generalize these
techniques for nonunit tasks. Although the general problem
corresponds to number partitioning (and NP-hard pro-
blem), one can look at special cases like Cartesian partitions,
as in the case of molecular dynamics applications. Finally,
using these techniques in different applications will be
interesting. We keep identifying new sources of flexibly
assignable tasks where our techniques can be used to
improve load balance.

ACKNOWLEDGMENTS

This work was funded by the Applied Mathematical
Sciences program, US Department of Energy, Office of
Energy Research, and performed at Sandia, a multiprogram
laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the US DOE under contract number
DE-AC-94AL85000. Ali Pinar is also supported by the
Director, Office of Science, Division of Mathematical,
Information, and Computational Sciences of the US Depart-
ment of Energy under contract DE-AC03-76SF00098. The
authors are indebted to Erik Boman for pointing out the
linear programming formulation in Section 4.

REFERENCES

[1] L. Kalé, M. Bhandarkar, and R. Brunner, “Load Balancing in
Parallel Molecular Dynamics,” Proc. Fifth Int’l Symp. Solving
Irregularly Structured Problems in Parallel, 1998.

[2] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” J. Computational Physics, vol. 117, pp. 1-19, 1995.

[3] A. Pinar and B. Hendrickson, “Partitioning for Complex Objec-
tives,” Proc. Int’l Parallel and Distributed Processing Symp., 2001.

[4] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge Univ. Press, 1996.

[5] G. Cybenko, “Dynamic Load Balancing for Distributed Memory
Multiprocessors,” J. Parallel Distributed Computing, vol. 7, pp. 279-
301, 1989.

[6] B. Hendrickson and T. Kolda, “Graph Partitioning Models for
Parallel Computing,” Parallel Computing, vol. 26, pp. 1519-1534,
2000.

[7] R.L. Carino and I. Banicescu, “Load Balancing Parallel Loops on
Message-Passing Systems,” Proc. 14th IASTED Int’l Conf. Parallel
and Distributed Computing and Systems, pp. 362-367, 2002.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: MIT Press and McGraw-Hill, 1990.

[9] R.E. Tarjan, Data Structures and Network Algorithms. SIAM, 1983.
[10] A.V. Goldberg and S. Rao, “Beyond the Flow Decomposition

Barrier,” J. ACM, vol. 45, pp. 783-797, 1998.
[11] V. Ramachandran, “The Complexity of Minimum Cut and

Maximum Flow Problems in an Acyclic Network,” Networks,
vol. 17, pp. 387-392, 1987.

[12] R. Diekmann, A. Frommer, and B. Monien, “Efficient Schemes for
Nearest Neighbor Load Balancing,” Parallel Computing, pp. 789-
812, 1999.

[13] R. Elsässer, B. Monien, and R. Preis, “Diffusive Load Balancing
Schemes on Heterogeneous Networks,” Proc. 12th ACM Symp.
Parallel Algorithms Architecture (SPAA), pp. 30-38, 2000.

[14] �A. Björck, Numerical Methods for Least Squares Problems. SIAM,
1996.

[15] C. Cryer, “The Solution of a Quadratic Programming Problem
Using Systematic Overrelaxation,” SIAM J. Control and Optimiza-
tion, vol. 9, pp. 385-392, 1971.

[16] A. Dax, “Bounded Least Squares Problem,” ACM Trans. Math.
Software, 1991.

[17] L. Silbert, D. Ertas, G. Grest, T. Halsey, D. Levine, and S.J.
Plimpton, “Granular Flow Down an Inclined Plane: Bagnold
Scaling and Rheology,” Physica Rev. E, vol. 64, p. 51302, 2001.

Ali Pinar received the BS and MS degrees in
computer engineering from Bilkent University,
Turkey, and the PhD degree in computer
science from the University of Illinois at
Urbana-Champaign. He has been working at
Lawrence Berkeley National Laboratory since
2001. His research interests include combina-
torial scientific computing, combinatorial algo-
rithms, parallel algorithms, and electric power
systems. Dr. Pinar is a member of SIAM, the

ACM, and the IEEE Computer Society.

Bruce Hendrickson received degrees in
mathematics and physics from Brown Univer-
sity, followed by the PhD degree in computer
science from Cornell University. He has been at
Sandia National Labs in Albuquerque since
1990, where he is currently a distinguished
member of the technical staff in the Discrete
Algorithms and Math Department. He also holds
an appointment in the Computer Science De-
partment at the University of New Mexico. Dr.

Hendrickson is the author of more than 70 peer reviewed scientific
papers and a number of patents, and has served on the editorial boards
of several SIAM and IEEE journals. His interests include combinatorial
scientific computing, parallel algorithms, linear algebra, graph algo-
rithms, scientific software, and data mining. He is a member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PINAR AND HENDRICKSON: IMPROVING LOAD BALANCE WITH FLEXIBLY ASSIGNABLE TASKS 965

